画轴对称图形评课稿

时间:2018-11-05 八年级 浏览:

 今天我们来学习八年级数学上册轴对称图形的认识这一个章节,我们可以从以下方面对课文内容进行讲解!

课 题

画轴对称图形

课时目标

1.通过实际操作,了解什么叫做轴对称变换.

2 .如何作出一个图形关于一条直线 的轴对称图形.

课时重点

1.轴对称变换的定义. 2. 能够按要求作出简单平面图形经过轴对称后的图形.

课时难点

1.作出简单平面图形关于直线的轴对称图形.    2.利用轴对称进行一些图案设计.

教学准备

教学过程

备  注

Ⅰ.设置情境,引入新课

将一张纸对折后,用 针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形.准备一张质地较软,吸水性能 好的纸 或报纸,在纸的一侧上滴上一 滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的.

这节课我们就是来作简单平面图形经过轴对称后的图形.

Ⅱ.导入新课

由我们已经学过的知识知道,连结任意一 对对应点的线段被对称轴垂直平分.

类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.对称轴方向和位置发生变化时,得到的图形的方 向和位置也会发生变化.

结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;

连结任意一对对应点的线段被对称轴垂直平分.

我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.

成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴 对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.

Ⅲ.随堂练习

(一)如图(1),将一张正六边形纸沿虚线对折折3次,得 到一个多层的60°角形纸,用剪 刀在折叠好的纸上随意剪出一条线,如图(2 ).

(1)猜一猜, 将纸打开后,你会得到怎样的图形?

(2)这个图形有几条对称轴?

(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?

 (二)回顾本节 课内容,然后小结.

  Ⅳ.课时小结

本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对 称轴位置和方向 的变化,使我们 设计出更新疑独特的美丽图案.

 

相关资料