解方程评课稿

时间:2018-11-02 五年级 浏览:

 今天我们来学习五年级数学上册解方程的认识这一个章节,我们可以从以下方面对课文内容进行讲解!

《解方程》教学设计

教学目标:

知识与技能: 1、使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、结合图例,根据等式不变的性质,学会解简易方程。

3、掌握解方程的格式和写法,并能用代入法进行检验。

过程与方法:利用等式的性质解简易方程。 

情感态度与价值观:关注由具体到一般的抽象概括过程,培养学生的代数思想。

教学重点:1、使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、会解简易方程,并能用代入法进行检验。

教学难点:1、使学生初步理解“方程的解”与“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

2、理解解方程的原理,掌握正确的解方程格式及检验方法。

教学方法:创设情境;观察、猜想、验证等方法。

教学准备:主题图,图片,练习题等。

教学过程:

一、复习导入,回顾旧知

1、回忆等式有什么性质?

2、什么是方程?

师:这节课我们就利用天平平衡的原理也就是等式的性质来解方程(板书:解方程)齐读解方程,这种思考方法到初中解更加复杂的方程时仍然会用到。下面我们就来研究一下它吧!

(设计意图:复习和巩固前两节学习的天平平衡道理导入新课,能加深学生的记忆。另外强调解方程这种思考方法到中学解更加复杂的方程一直有用,可以提高学生学习掌握新的思考方法的积极性。)

二、提出问题,探究新知

(出示例1的主题图)

1、提出问题:

师:请看这幅图,请你说出图上的意思。

(盒子里有x个球,盒子外有3个球,合起来一共是9个球。)

师:能不能用我们新学的方程解决这个问题?

学生列出方程:X+3=9(引导学生根据加法的意义列出方程。)

师:同学们根据加法的意义得到方程X+3=9,(板书:X+3=9)

那么X是多少?(异口同声说6)

(设计思路:在这里学生能列出这个方程其实也是一个难点,因为学生一直是按以前算术方法的解题思路去分析,不假思索就会说出9-3=6,因此我在这里强调用加法的意义列出方程。为后面学习用方程解决问题做准备。)

2、结合天平探究解法

A、结合天平,理解方程

师:当然我知道这么简单的问题是难不住大家的,现在我们就将X+3=9这个方程转换到天平上来。(出示天平图1)

师:你能理解吗?说说他的意思。

师生结合图一起说:天平的左边是X+3,天平的右边是9,左右两边正好平衡,说明两边相等。齐读这个方程X+3=9

B、明确目的,寻找方法

师:接下来我们就来解这个方程,哎,我不禁要问我们解方程的目的是什么?

(学生回答:解方程的目的就是要算出X=?)

师:对,我们解方程的目的就是要算出X等于几.

师:请你结合天平图思考,怎样才能使天平的左边只剩下X,而且还要保持

天平平衡?(同座位的同学可以相互讨论)

组织交流(指名学生说,再说一次,齐说一次)

进一步明确:天平的两边同时去掉3个皮球,左边就只剩下X,右边剩下6个皮球,说明X代表6个皮球。

师:能不能把这个变换的过程用算式表示出来?自己试一试。

组织交流:谁愿意把你的做法展示给大家,还有不同的方法吗?这些方法那

一种更合理,谈谈你的想法,

师:从天平的两边同时去掉3个皮球,天平保持平衡,表示在方程里就是方

程的两边同时减去3,左右两边仍然相等。

师:(指着X+3=9)说:方程的左右两边同时减去2,左右两边相等吗?同时减去1呢?那为什么就要从方程的两边同时减去3,而不减去1或2。

再次强调解方程的目的就是要使方程的一边只剩下未知数X。

(设计意图:先由学生结合图列出方程,再把方程转换到天平上来,根据天平平衡的道理,学生很容易就想到从两边各拿走3个皮球,天平仍然平衡,,再引导学生将这一变换过程反映到方程上,明白方程的两边同时减去3,方程的左右两边仍然相等。使学生的思维由图转化成式,再由式子转化成图,最后再由图转换成式子,在学生的头脑中初步渗透数形结合的思想。另外,在这一段的教学中我两次强调到解方程的目的,因为我觉得它很重要。)

3、规范书写,指导验算

师:请同学们看课本上第67页解方程的书写格式。

问:书写解方程的过程要注意什么?

教师示范书写格式,①、先写方程X+3=9。②、接下来写“解:”。③、方程的左右两边同时减去3。④方程的左边只剩下未知数X。方程的右边9-3是6。得到方程的解是X=6。

师:在这里需要强调一点,解方程时每一步得到的都是一个等式,不能连等。另外还要注意等号对齐。

师小结:刚才我们计算出的x =6,这就是使方程左右两边相等的未知数的值,叫做方程的解。也就是说,x =6就是方程x +3=9的解。求方程解的过程叫做解方程。(板书:方程的解  解方程) 

4、引导:谁来说一说,方程的解和解方程有什么区别?

师引导学生小结:“方程的解”中的“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中的“解”的意思,是指求方程的解的过程,是一个计算过程。

5、检验:师:我们怎么能知道X=6是不是就是正确答案呢?可以把x =6的值代入方程的左边算一算,看看是不是等于方程的右边。

即, 检验:方程的左边= X+3

                                 =6+3

                                =9

                             =方程的右边

                        所以,X=6是方程的解。

让学生尝试验算,并注意指导书写。

师:同学们,检验的习惯要牢记,这样才会不出错。解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯,力求计算准确。

这样的书写规范、整齐、清楚就像一件艺术品一样值得人们去欣赏,老师希望同学们今后解题的过程中都能这样去做。能做到吗?

6、质疑:看书第67页,还有什么不明白的地方?

三、巩固练习。

1、巩固练习

X+2=15  (自己解方程,对照答案,检查自己做的,哪儿错了。)

(设计意图:从一开始就强化必要的书写规范,以发挥首次感知先入为主的

强势效应,有利于促进良好的书写习惯的形成。)

2、出示:第67页做一做的前两道题。

    100+X=250     X+12=31

(1)学生独立完成,师巡视。

(2)指名学生板演,并说说如何解答的?

先在练习本上试试看,有勇气的同学可以到前边来试试。

有困难的同学可以找老师或找小伙伴帮助。

订证答案让我们一起来看。他完成的怎么样?你对他的解题过程有什么意见要提吗?

2、加法会解了,那么减法又怎样做呢?我们来挑战一下。

(1)出示第67页做一做的第三道题:x-63=36小组讨论完成。

(2)展示学生的计算结果,让学生说出解题思路。

再来一起看X-63=36这一道题你是怎么想的,为什么要加上63呢。

3、我最棒

(1)我是小法官

A:x+1.2=5.7                     B:x-1.8=4

       x+1.2-1.2=5.7-1.2                解:x-1.8+1.8=4+4

       x=4.5                                     x=8

4、找朋友

       8+ X =16                             X =3

       X -6=17                              X =9.6

       X +2.1=5.1                           X =8

       X -3.2=6.4                           X =23

5、拓展

X -0.5=3+1.9

四、总结收获:

解方程是一个过程,这个过程就像我们用天平操作一样。让我们一起来回想一下,在这个过程中我们都做了什么?

五、课后作业:

数学课本70页练习十五的第2题中的前四题。

板书设计:                  

解方程

例1:                           

X +3=9  

解:X+3-3=9-3

X=6  

检验:方程的左边=X+3

                               =6+3

                               =9

=方程的右边

 所以,X=6是方程的解。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。 

相关资料