文件大小:83.50 KB 资料格式:.doc 下载:141次
所需点数:
课件类型:/word
注册本站会员,享受高速下载,立即注册会员
小升初数学(奥数)知识点汇总
一、质数、倍数、倍数、约数、整除问题
1、质数(素数)
① 只有1和它本身两个约数的整数称为质数;
② 100以内质数共25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97;
③ 最小的偶合数是4,最小的奇合数是9;
④ 0、1既不是质数也不是合数。
⑤ 每一个合数分解质因数形式是唯一的。
2、倍数、约数性质
① 一个数最小的倍数是这个数本身,没有最大的倍数;
② “0”没有约数和倍数,一般认为“1”只有约数“1”;
③ 假如几个数都是某一个数的倍数,那么这几个数的组合也是某个数的倍数。
例如:26、39是13的倍数,则2639也是13的倍数。
④ 一般的数字的约数的个数都是偶数个,但是平方数的约数个数是奇数个。
例如:“9”有3个约数(1、3、9),“16”有5个约数(1、二、4、8、16)。
⑤ 约数和倍数必须强调出是哪个数字的约数和倍数。
⑥ 一个数既是它本身的倍数又是它本身的约数。
⑦ 一个数如果有偶约数,则这个数必为偶数。
3、整除性质
① 能被“2”整除的数的特点:末尾数字是“0、2、4、6、8”;
② 能被“3(9)”整除的数的特点:各位上数字和能被“3(9)”整除;
③ 能被“4(25)”整除的数的特点:末尾两位能被“4(25)”整除;
④ 能被“5”整除的数的特点:末尾数字是“0或5”;
⑤ 能被“8(125)”整除的数的特点:这个数末三位能被“8(125)”整除;
⑥ 能被“7、11、13”整除的数的特点:这个数从右向左每三位分成一节,用奇数节的和减去偶数节的和,所得到的差能被“7、11、13”整除。如果求余数时,则奇数节和小于偶数节和时,需要将奇数节和加上若干个“7、11、13”,再相减。
⑦ 能被“11”整除的数的另一个特点:这个数奇数位数字和与偶数位数字和的差能被11整除。例如:“122518”分析:奇数位数字和1+2+1=4,偶数位数字和2+5+8=15,差为11,说明这个数可以被11整除。如果求余数时,则奇数位数字和小于偶数位数字和时,需要将奇数位和加上若干个“11”,再相减。
二、公约数、公倍数
1、最大公约数:公有质因数的乘积。通常用“( )”表示。
2、最小公倍数:公有质因数和独有公因数的连乘积。用“[ ]”表示。
3、两个自然数的最小公约数和最大公倍数的乘积=两个自然数的乘积
4、如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。例如8和9,它们是互质数,所以(8,9)=1,[8,9]=72。
5、如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。例如18与3,18÷3=6,所以(18,3)=3,[18,3]=18。
下载地址:[ 下载地址1 ]