文件大小: 资料格式: 下载:201次
所需点数:
课件类型:/word
注册本站会员,享受高速下载,立即注册会员
一、填空
1.学校有一条长60米的小道,计划在道路一旁栽树,每隔3米栽一棵,有( )个间隔。如果两端都各栽一棵树,那么共需( )棵树苗;如果两端都不栽树,那么共需( )棵树苗;如果只有一端栽树,那么共需( )棵树苗。
考查目的:考查在一条线段上植树问题的三种情况,正确区分植树棵数和间隔数之间的三种关系。
答案:20;21;19;20。
解析:先用60÷3求出有20个间隔,再根据在一条线段上植树问题的三种情况的数学模型来解答:如果两端都植树,棵数=间隔数+1;如果两端都不植树,棵数=间隔数-1;如果一端植一端不植,棵数=间隔数。
2.把10根橡皮筋连接成一个圈,需要打( )个结。
考查目的:考查在封闭曲线上的植树问题(间隔数=植树棵数)。
答案:10。
解析:首先明确这道题是在封闭曲线上的植树问题,有10根橡皮筋相当于间隔数是10,打结的个数就相当于植树棵数。因为在封闭曲线上间隔数=植树棵数,所以打结的个数是10。
3.在一个正方形的每条边上摆4枚棋子,四条边上最多能摆( )枚,最少能摆( )枚。
考查目的:考查封闭图形的植树问题中,角上是否植树会决定植树的总棵树。
答案:16;12。
解析:正方形每条边上摆4枚棋子,有两种摆法:四个角都摆棋子和四个角都不摆棋子。当四个角都不摆棋子时,四条边上摆的棋子最多,一共能摆4×4=16枚棋子;当四个角都摆棋子时,角上的棋子同时属于相邻的两条边,这时摆的棋子总数最少,要减去角上重复的4枚棋子,所以最少能摆4×4-4=12枚棋子。
4.豆豆和玲玲同住一幢楼,每层楼之间有20 级台阶,豆豆住二楼,玲玲住五楼。豆豆要从自己家到玲玲家去找她玩,需要走( )级台阶。
考查目的:考查植树问题数学模型的逆向应用。
答案:60
解析:每层楼之间有20级台阶,相当于间隔是20;从二楼到五楼有3个间隔,求需要走多少级台阶也就是求总数,所以用20×3,得到答案为60。
下载地址:[ 下载地址1 ]